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Abstract  

Human evaluations are typically considered the gold standard in natural language 
generation, but as models’ fluency improves, how well can evaluators detect and 
judge machine-generated text? We run a study assessing non-experts’ ability to 
distinguish between human- and machine-authored text (GPT2 and GPT3) in 
three domains (stories, news articles, and recipes). We find that, without training, 
evaluators distinguished between GPT3- and human-authored text at random 
chance level. We explore three approaches for quickly training evaluators to 
better identify GPT3-authored text (detailed instructions, annotated examples, 
and paired examples) and find that while evaluators’ accuracy improved up to 
55%, it did not significantly improve across the three domains. Given the 
inconsistent results across text domains and the often contradictory reasons 
evaluators gave for their judgments, we examine the role untrained human 
evaluations play in NLG evaluation and pro- vide recommendations to NLG 
researchers for improving human evaluations of text generated from state-of-the-
art models.  

 



 

Figure 1: Excerpts from human evaluators’ explanations for why they believe a 
GPT3-generated story (also excerpted) was written by a human (left) or a machine 
(right). The evaluators point to a wide range of text attributes to make their 
decisions, sometimes using the same aspect of the text to come to opposite 
conclusions.  

 

1 Introduction  

Human-quality text has long been a holy grail for the output of natural language 
generation (NLG) systems, serving as an upper bound on their performance. Since 



we lack a good way of encoding many aspects of what constitutes human-quality 
output in an automated method, we often must rely on human evaluation for our 
models. Though evaluations with end-users in an applied setting are encouraged 
(Belz and Reiter, 2006), in practice, most human evaluations instead ask people to 
rate generated text’s intrinsic quality (van der Lee et al., 2019; Howcroft et al., 
2020). Sometimes the generated text is explicitly compared to human-authored 
text (e.g., Liu et al., 2016; Zellers et al., 2021; Zhang et al., 2020), but even when 
no human-authored text is evaluated, evaluators implicitly compare the 
generated text to their knowledge of language and norms within specific 
domains.  

Evaluators are often asked to assess a text holistically, e.g., based on its overall 
quality, naturalness, or humanlikeness (van der Lee et al., 2021; Howcroft et al., 
2020), where the exact evaluation criteria is left to the discretion of the evaluator. 
Though other evaluations are broken down along specific dimensions of text 
quality (e.g., grammaticality, coherence, etc.), Novikova et al. (2017, 2018) and 
Callison-Burch et al. (2007) found that these dimensions are often correlated and 
may be conflated in some evaluation settings. This is concerning because, as NLG 
models improve, evaluators are asked to read longer passages of text conditioned 
on large amounts of context. In these cases, fluency-related aspects of quality 
(i.e., the ones that don’t require careful reading of the context and meaning of 
the passage) are the easiest to assess, particularly in small-batch evaluations with 
non-expert evaluators where speed is incentivized. This poses a challenge when 
collecting human evaluations for state-of-the-art language models, as errors are 
often content- based (e.g., factual inaccuracies or inconsistencies with the 
context) rather than fluency-based (Brown et al., 2020), so a superficial read may 
not be sufficient to catch model errors. For accurate assessments of generated 
text, we need human evaluations that are designed to encourage a sufficiently 
careful reading of the text to examine these subtler aspects of text quality.  

We asked non-expert evaluators to assess the humanlikeness (operationalized as 
how believably human an evaluator finds a text) of text generated by current NLG 
models (GPT2 and GPT3) to test what current human evaluation practices can 
reveal about the models’ quality (§2). We found that evaluators were unable to 
distinguish between GPT3- and human-authored text across story, news, and 
recipe domains. However, when we categorized the aspects of text the evaluators 
used to make their judgments, we found they primarily focused on the grammar, 
spelling, and style of the text. The evaluators’ responses also indicated that they 



underestimated the quality of text current models are capable of generating (as 
seen in Figure 1). To our knowledge, this paper is the first to evaluate human 
evaluations of GPT3-generated text across multiple domains.  

We then looked at three different evaluator training methods—providing detailed 
instructions, annotated examples, and human-machine paired examples—to test 
whether we could improve evaluators’ accuracy (§3). While we found including 
examples in the task increased the set of texts evaluators thought could be 
machine-generated and increased their focus on textual content, no training 
method significantly increased evaluators’ performance consistently across 
domains.  

Based on our results (discussed in §4), we recommend moving away from small- 
batch evaluations with little training when collecting human evaluations of NLG 
models (§5). We also encourage practitioners to consider alternative evaluation 
frameworks that capture the usefulness of generated text in downstream settings 
rather than its humanlikeness.  

2 How well can untrained evaluators identify machine- generated 
text?  

In our first study, we ask how well untrained evaluators can distinguish between 
human- and machine-generated text. This task format, inspired by the Turing 
(1950) Test, is used to compare the quality of machine-generated text to human-
authored text and, as models’ fluency improves, to analyze NLG models’ ability to 
“fool” readers (Garbacea et al., 2019; Ippolito et al., 2020; Brown et al., 2020).  

By asking evaluators to assess the humanlikeness of the text with only minimal 
instructions (see Figure 2), we observe how well untrained evaluators can detect 
state-of-the-art machine-generated text and which attributes evaluators focus on 
and think are important for detecting machine-generated text.  

2.1 The Task  

We gave evaluators 5 text passages, some of which were written by people and 
some generated by a model. We asked them to rate the text on a 4-point scale 
(Ippolito et al., 2020):  

1. Definitely human-written 



2. Possibly human-written 
3. Possibly machine-generated  
4. Definitely machine-generated  

If they selected option 1, we asked them: “Why did you select this rating?” 
Otherwise, they were asked, “What would you change to make it seem more 
human-like?” The interface is shown in Figure 2.  

2.2 Data  

We considered human- and machine-generated text in three different domains: 
stories, news articles, and recipes. In all three cases, we collected 50 human-
authored texts in English and generated 50 texts from both the 175B parameter 
GPT3 model (also known as Davinci; Brown et al., 2020)1 and GPT2-XL (Radford et 
al., 2019).2 Evaluators were assigned to one domain and one model; the texts 
read by any given evaluator included some human-authored texts and some texts 
generated by their assigned model. We only considered texts 100 words or 
longer, and after reaching 100 words, all texts were truncated at the end of the 
next sentence.3  

 
1 beta.openai.com/  
2 huggingface.co/gpt2-xl  
3 Using NLTK; www.nltk.org/ 



 

Figure 2: The task interface (story domain)  

 



To generate text, we used the “three-shot” setting described in Brown et al. 
(2020), conditioning the text on three additional samples of in-domain, human- 
authored text, which we refer to as the priming texts (all priming texts are in the 
supplementary materials and at ark.cs.washington.edu/human_evals_ACL21). 
While this setting is not typically how GPT2 is used in practice, we held this 
approach constant to directly compare how model quality changes evaluators’ 
ability to distinguish between texts. For each domain, each generated text was 
conditioned on the same set of priming texts. The texts were delimited with an 
⟨EOS⟩ token and generated using the default GPT3 generation settings (i.e., 
sampling with temperature = 0.7).  

2.2.1 Stories  

The human-authored texts came from the Reddit WritingPrompts dataset (Fan et 
al., 2018).4 We collected all the stories that began with Once upon a time (255 
stories total) and randomly chose 50 human-authored stories from this set. For 
the machine-generated text, we conditioned the models on the three priming 
texts and on the phrase Once upon a time. We removed generated stories that 
directly copied a priming text (with > 80% overlap) and regenerated those texts (9 
instances with GPT2, 2 with GPT3).  

4 github.com/pytorch/fairseq/tree/master/examples/stories  

This is the most open-ended of the three domains, as the story’s content is 
virtually unrestricted, and the only creative domain. It is also the noisiest of the 
human-authored datasets, as the stories were originally collected from social 
media comments with no quality-based filtering.  

2.2.2 News Articles  

We collected 2,111 recent local news articles from 15 different newspapers using 
Newspaper3k5 (details in Appendix A.1). After filtering out articles under 100 
words, we manually filtered out articles that weren’t local news or that 
referenced the coronavirus pandemic. We randomly chose 50 articles to use as 
our human- authored news articles and another 50 to use as prompts for our 
generation models. We conditioned each generated text on the headline and first 
sentence from the prompt articles, along with the three priming texts.  

5 github.com/codelucas/newspaper  

 

http://ark.cs.washington.edu/human_evals_ACL21


Because the title and the first sentence of a news article often summarize its 
contents, the generated content must adhere to the topics they introduce. By 
using local, recent news, we also limit the models’ ability to copy from their 
training data. The models seemed to have the most trouble with this dataset 
structurally, e.g., generating new headlines without ending the current article or 
outputting invalid end-of-file tags. 

2.2.3 Recipes  

We collected 50 human-authored recipes from the RecipeNLG dataset (Bień et al., 
2020), which contains 2,231,142 recipes scraped from the web. We randomly 
chose an additional 50 recipes and used their titles and ingredient lists as 
prompts, appending them to the end of the priming texts.  

This is the most closed of the three domains, as the recipe must incorporate the 
listed ingredients and result in the dish described by the title. Recipes are typically 
written in clear commands, leaving little room for surprising or unexpected text.  

2.3 Participants  

We used Amazon Mechanical Turk (AMT) to collect the text evaluations with non- 
expert evaluators, commonly used in NLG evaluations (van der Lee et al., 2019). 
To have adequate power in our analyses (based on a power analysis with β = 0.8; 
Card et al., 2020), we had 130 different evaluators for each of the 6 task settings 
(3 domains × 2 models). Each participant evaluated 5 texts each, giving us a total 
of 780 participants and 3,900 text evaluations.  

We paid evaluators US$1.25 for completing the task. Following common best 
practice on AMT (Berinsky et al., 2012), evaluators had to have over a 95% 
acceptance rate, be in the United States, and have completed over 1,000 HITs 
(AMT tasks). We excluded evaluators’ work if their explanations were directly 
copied text from the task, did not match their responses, did not follow the 
instructions, or were short, vague, or otherwise uninterpretable. Across 
experiments, 445 participants (18.6%) were rejected and not included in the §2 
results (780 approved participants) and §3 results (1,170 approved participants).  



2.4 Results 

Table 1: §2 results, broken down by domain and model, along with the F1, 

precision, and recall at identifying machine-generated text, Krippendorff’s 𝛼, % 
human-written guesses, and % confident guesses (i.e., Definitely machine- or 
human-authored). * indicates the accuracies significantly better than random 
(two-sided t-test, for Bonferroni-corrected p < 0.00333).  

Model 
Overall 

acc. 
Domain Acc. F1 Prec. Recall Kripp. 𝛼 

% 
human 

% 
confident 

GPT2 *0.58

Stories *0.62 0.60 0.64 0.56 0.10 55.23 52.00 

News *0.57 0.52 0.60 0.47 0.09 60.46 51.38 

Recipes 0.55 0.48 0.59 0.40 0.03 65.08 50.31 

GPT3 0.50 
Stories 0.48 0.40 0.47 0.36 0.03 62.15 47.69 
News 0.51 0.44 0.54 0.37 0.05 65.54 52.46 

Recipes 0.50 0.41 0.50 0.34 0.00 66.15 50.62 

Overall, evaluators choosing between human and GPT2-generated text correctly 
identified the author of the text 57.9% of the time,6 but the evaluators choosing 
between human- and GPT3-generated text only guessed correctly 49.9% of the 
time (Table 1), compared to 50% random chance. While the accuracy of 
classifying GPT2- vs. human-authored text is significantly7 different from chance, 

 evaluators’ accuracy distinguishing GPT3- and human-authored text is not.8 This 
remains the case regardless of text domain; we failed to find any evidence that 
evaluators’ accuracy on any one domain for GPT3 differs from the overall GPT3 
accuracy of ≈ 50%.9 The story texts saw the biggest drop in evaluator accuracy 
from GPT2 to GPT3 (62% to 48%, Cohen’s d = 0.57). The distribution of evaluators’ 
scores are shown in Appendix A.2.  

6 Unless otherwise noted, all analyses binned the responses into 2 categories 
(human and machine). 

7 t388 = 6.58, p < 0.0001
8 t388 = −0.09, p = 0.93 
9 ANOVA with F2,390 = 0.78, p = 0.46



In Table 1, we see other statistics worsen as well between GPT2 and GPT3: how 
well evaluators identified the machine-generated text (F1, precision, and recall), 

evaluators’ agreement (Krippendorff’s α, a measure of annotator agreement that 
corrects for the probability of random agreement), and the percent of guesses 
that the text was human-written (% human). Given that the texts are equally 
likely to be human- and machine-written, there are disproportionately many 
human guesses, making up two thirds of the responses in the GPT3 experiments. 
Despite the significantly lower scores, evaluators’ confidence (the percent of 
Definitely responses) remains fairly constant across conditions.  

2.5 Analysis  

Taken on its own, the evaluators’ difficulty identifying GPT3-generated text com- 
pared to GPT2 points to the improvement of new NLG models. However, it also 
points to concerns about extending current human evaluation methodologies to 
state-of-the-art text generation. In particular, the evaluators’ explanations reveal 
underlying confusion and misconceptions about state-of-the-art NLG.  

To better understand what untrained evaluators focused on in the text to make 
their decisions, the authors annotated 150 random responses from the evaluators 
who distinguished between human- and GPT3-generated text (see Appendix A.3 
for annotation details). We divided the text annotation labels into three 
categories: form, content, and machine capabilities. Form qualities focus on the 
format, style, and tone of the text, while content focuses on the text’s meaning. 
We also coded for comments that explicitly referenced people’s perceptions of 
what types of language machines are capable (or incapable) of generating 
(machine capabilities).  

We found nearly twice as many comments about the form of the text than the 
content (form: 47% of labels, content: 25%). Evaluators in our sample focused 
most on the spelling, grammar, or punctuation of the texts (45 out of 150 
comments) and the style or tone of the text (24 out of 150 comments). However, 
these dimensions of text are unlikely to be helpful in identifying text generated by 
current models, considering that GPT3 has already been shown to generate fluent 
text and to adapt easily to new generation domains (Brown et al., 2020).  

We also found that the reasons evaluators gave for their answers often 
contradicted each other. The formality of the text, spelling and grammar errors, 



and clarity were all cited to justify both human and machine judgments. This was 
also reflected in the low agreement scores between evaluators, with 
Krippendorff’s α ≈ 0 across domains.  

Evaluators’ expectations about what NLG models are capable of ranged from 
thinking their text is already indistinguishable from human-authored text (“I have 
no idea if a human wrote anything these days. No idea at all.”) to doubting 
machines’ ability to use basic language (“Usually AI has terrible grammer [sic] and 
messes up.”). But overall we found most evaluators’ beliefs about generated 
language underestimated or misunderstood current NLG models, as seen in 
Appendix A.4.  

3 Can we train evaluators to better identify machine-generated 
text?  

Given evaluators’ inability to distinguish GPT3- and human-authored text and 
their inconsistent reasoning for their decisions, we investigated whether there 
were simple ways of improving evaluators’ ability to spot attributes of GPT3-
generated text. Inspired by crowdsourcing research on guiding workers on writing 
or other subjective tasks (Kim et al., 2017; Mitra et al., 2015), we tested three 
lightweight evaluator-training methods to see if we could improve people’s ability 
to identify machine-generated text while maintaining the short, low-cost nature 
of the evaluations.  

3.1 Evaluator Training Methods  

We considered 3 evaluator trainings that can be added to the beginning of a 
human evaluation task, at most requiring only 3 extra samples of human- and 
machine- generated text. To test the effectiveness of each type of training, we re-
ran the experiments from §2, but this time, we prepended one of three evaluator-
training methods to the evaluation task: an instruction-based training, an 
example-based training, and a comparison-based training. Screenshots of the 
training interfaces are in Appendix A.6; the full set of training materials are in the 
supplementary materials and at ark.cs.washington.edu/human_evals_ACL21.  

Other than the training, the task setup was identical to the GPT3-based tasks in 
§2. We again ran the task on Amazon Mechanical Turk across three domains 
(stories, news, and recipes), using the same texts. As each individual participant 

http://ark.cs.washington.edu/human_evals_ACL21


was only permitted to complete one set of evaluations, the set of evaluators who 
received these trainings was completely disjoint from the set of evaluators from 
our first study. The participants were subject to the same restrictions described in 
§2.3 and excluded according the same criteria; we did not use the trainings to 
filter out evaluators. For each domain and training method pair, we had 130 
unique evaluators complete the task, giving us 5,850 text annotations from 1,170 
evaluators.  

3.1.1 Training with Instructions  

To give evaluators a better sense of which parts of the text to pay attention to, we 
extended the original task instructions to include dimensions of the text that 
could be helpful for identifying machine-generated text (repetition and factuality) 
and ones that could be misleading (grammar, spelling, and style). We chose these 
dimensions based on previous work (Ippolito et al., 2020) and evaluators’ 
comments in a pilot study (see Appendix A.5).  

The Instructions training was the simplest of our 3 evaluator training methods. It 
was general enough to be applied across the 3 domains but provided little 
information about the quality and domain of text the evaluator would be rating. It 
did not increase the cost of collecting evaluations (US$1.25 per HIT) because it 
does not require any extra work on the part of the evaluator, though this also 
made it the easiest training to ignore. The instruction-based training is the most 
prescriptive of the training methods, as the researcher has to choose the 
dimensions they want the evaluators to focus on.  

3.1.2 Training with Examples  

Our Examples training consisted of 3 practice rounds of the actual task: given a 
text, guess if it is machine- or human-authored. We collected 3 additional texts in 
the same manner described in §2.2 and wrote a short explanation of which 
aspects of the text hinted at its source. After an evaluator makes their guess, the 
correct answer and explanation are shown. Each domain had its own set of 
examples and explanations.  

By showing examples, this training helps set the evaluators’ expectations about 
the quality of the human- and machine-generated text. We paid evaluators more 
for completing this task (US$1.75 per HIT) to compensate for the extra texts they 
needed to read. As with the instruction-based training, while pointing out specific 



text dimensions can help evaluators focus on important features, it may also 
restrict their search space.  

3.1.3 Training with Comparison  

In the Comparison training, we took the example passages from the Examples 
training and paired them with a text from the opposite source (machine or 
human) that began with the same prompt. We asked evaluators to guess which of 
the two texts was the machine-generated one. We then provided the correct 
answer to the evaluator, along with the same explanations used in the Examples 
training.  

This training allows evaluators to directly compare human and machine texts 
written from the same prompt. It is also the most expensive training, as it re- 
quired evaluators to read three more passages than the Examples training; we 
paid evaluators US$2.25 per HIT.  

3.2 Results  

Table 2: §3 results, broken down by domain and training method, along with the 
F1, precision, and recall at identifying machine-generated text, Krippendorff’s 

α, % human-written guesses, and % confident guesses (i.e., Definitely machine- or 
human- authored). “None” training refers to the GPT3 results from §2. * indicates 
accuracies significantly better than None (no training; two-sided t-test, for 
Bonferroni-corrected p < 0.00333).  

Training Overall 
acc. 

Domain Acc. F1 Prec. Recall 
Kripp. 
𝛼 

% 
human 

% 
confident 

None 0.50 Stories 0.48 0.40 0.47 0.36 0.03 62.15 47.69 

News 0.51 0.44 0.54 0.37 0.05 65.54 52.46 
Recipes 0.50 0.41 0.50 0.34 0.00 66.15 50.62 

Instructions 0.52 Stories 0.50 0.45 0.49 0.42 0.11 57.69 45.54 

News 0.56 0.48 0.55 0.43 0.05 62.77 52.15 
Recipes 0.50 0.41 0.52 0.33 0.07 67.69 49.85 

Examples *0.55 Stories 0.57 0.55 0.58 0.53 0.06 53.69 64.31 

News 0.53 0.48 0.52 0.45 0.05 58.00 65.69 

Recipes 0.56 0.56 0.61 0.51 0.06 55.23 64.00 

Comparison 0.53 Stories 0.56 0.56 0.55 0.57 0.07 48.46 56.62 
News 0.52 0.51 0.53 0.48 0.08 53.85 50.31 

Recipes 0.51 0.49 0.52 0.46 0.06 54.31 53.54 



 

We found that while all 3 training methods improved evaluators’ accuracy at 
identifying machine- vs. human-authored text over the no-training accuracy, the 
Examples training was the only one that showed significant improvement (see 
Table 2).10 

10 Tukey’s HSD adjusted p < 0.003 for distinguishing between the Examples training and no training, d = 0.25  

Breaking down the results by domain, however, we find the Examples accuracy 
did not significantly increase over the no-training accuracy when considering any 
of the three domains individually. Even so, the significant difference in overall 
performance is mainly contributed by the story domain; when comparing 
evaluators’ performance with no training to its Examples training counterpart, we 
see a change of 0.019 and 0.062 mean accuracy in the news and recipe domains, 
respectively, versus 0.086 on the story domain. This is perhaps due to the 
examples helping override the preconception that machines cannot generate 
“creative” text.  

Across all 3 domains, the Examples and Comparison trainings produced the 
highest recall and F1 scores for evaluators’ judgments and decreased the 

percentage of texts they guessed were human-written, which indicate that 
evaluators were willing to consider a broader set of texts to be machine-
generated than the evaluators in §2. However, despite the trainings and the 
increased proportion of confident responses, evaluator agreement remained low 
across domain and training settings (α ≤ 0.11), and higher agreement did not 
correspond to higher accuracy.  

 

Table 3: % of annotation labels that reference the text’s form and content and the 
evaluator’s perception of machines’ capabilities  

Training Form Content Machine Capabilities 
None 47.1 24.6 28.3 

Examples 32.5 50.0 17.5 

 



3.3 Analysis  

We again annotated 150 comments along the dimensions listed in Appendix A.3, 
divided into form, content, and machine capabilities categories, this time from 
evaluators who received the best-performing Examples training. As shown in 
Table 3, we found that the proportion of form comments dropped in the sample 
of evaluators who went through the Examples training, while the proportion of 
content comments doubled. We also saw a drop in the number of comments 
mentioning evaluators’ expectations of machine-generated text. While this 
change in focus doesn’t necessarily correspond to correct judgments, content 
reasons are more in-line with current NLG model capabilities (Brown et al., 2020).  

4 Discussion  

Overall, none of our three training methods significantly improved evaluators’ 
ability to detect machine-generated text reliably across text domains while still 
maintaining the small-batch nature of Amazon Mechanical Turk. This speaks to 
the improving quality of NLG models, but we also found that untrained evaluators 
mainly focused on the format of the text, deciding if it was human or machine- 
generated based on whether the text was grammatically or stylistically correct. 
This, combined with the high percentage of human guesses, the low recall scores 
for the machine guesses, and the evaluators’ comments on their expectations of 
NLG models, indicates a systematic underestimation by the evaluators of the 
quality of machine-generated text. Evaluators who were trained with examples 
had higher expectations of machine-generated text and focused more on the 
text’s content; however, the training was not sufficient to significantly raise 
evaluators’ scores across all three domains.  

Many of the explanations given by evaluators included references to the text that 
reflected human attributes or intent that they suspected machines could not 
generate (e.g., “personal description a machine wouldn’t understand, [like a 
pirate] wanting to be home with his wife and son” from Figure 1 and the 
examples in Appendix A.4). However, current NLG models are capable of 
generating text with at least superficial reference to human attributes or intent, 
as seen in the generated story in Figure 1. This assumption that machines can’t 
generate text with these aspects of humanlikeness led many evaluators astray, 
and we suspect it is one cause of the low accuracy we found.  



Crowdsourcing studies dealing only with human-authored texts often include ex- 
tensive training, quality checks, or coordination (Kittur and Kraut, 2008; Kim et al., 
2017; Bernstein et al., 2010). NLG evaluations usually forego such structures, 
based, we suspect, on the assumption that evaluating machine-generated text 
requires only fluency in the language the text is generated in. Our results suggest 
otherwise. Evaluators often mistook machine-generated text as human, citing 
superficial textual features that machine generation has surpassed (Brown et al., 
2020). One potential remedy for this is to focus evaluator training on debunking 
this misconception. We did see evidence that the increase in accuracy we saw 
with our Examples training was associated with fewer explanations mistakenly 
referencing machine capabilities, even though the training did not specifically 
focus on this.  

5 Recommendations  

Based on our findings, if NLG researchers must run human evaluations as small- 
batch evaluations on Amazon Mechanical Turk or similar platforms, we 
recommend they train evaluators with examples. This will help calibrate the 
evaluators’ expectations of generated text and indicate the careful reading they 
may need to do to properly assess the text’s quality. Our experiments also 
indicate the importance of confirming with evaluators why they have made the 
decisions they have, as the criteria they might implicitly be evaluating may be 
mismatched with researchers’ intended criteria. However, other evaluation 
setups may be more successful on Amazon Mechanical Turk, such as long-term 
evaluations with qualified evaluators who have gone through an extended 
training (like those in Kittur and Kraut, 2008; Zellers et al., 2019a) or third-party 
evaluator quality tools (e.g., Positly, used by Brown et al., 2020).  

However, given the increasing length of text NLG models can handle and the 
careful reading needed to detect many errors in generated text, we encourage 
NLG researchers to move away from standalone, intrinsic human evaluation tasks. 
We found that, by default, our evaluators in this evaluation setting were most 
likely to focus on surface-level, fluency-related aspects of quality. We join past 
work (Belz and Reiter, 2006; van der Lee et al., 2021) in recommending a move 
towards evaluation settings where evaluators are better motivated to carefully 
consider the content and usefulness of generated text. For example, TuringAdvice 
(Zellers et al., 2021) asks evaluators to rate NLG models by their ability to 
generate helpful advice, and RoFT (Dugan et al., 2020) engages evaluators 



through a guessing game to determine the boundary between human- and 
machine-generated text. Other evaluation methods ask the evaluators to directly 
interact with the generated text; for example, Choose Your Own Adventure (Clark 
and Smith, 2021) and Storium (Akoury et al., 2020) evaluate story generation 
models by having people write stories with the help of generated text.11 We see 
that GPT3 can successfully mimic human-authored text across several domains, 
renewing the importance of evaluations that push beyond surface-level notions of 
quality and consider whether a text is helpful in a downstream setting or has 
attributes that people would want from machine-generated text.  

11 Note that we initially tried a fourth training condition along these lines, where 

we asked evaluators to directly interact with the generated text by rewriting it to 
be more humanlike. We found we were unable to successfully recruit evaluators 
to complete this task. The rate of retention was less than 30%, and the rejection 
rate was over 50%. We found AMT was not a good platform for this type of task, 
at least not for the format and the price point we explored in this work.  

Finally, given the mixed effect we found different trainings can have on 
evaluators’ performance and the lack of human evaluation details typically 
presented in NLG papers (van der Lee et al., 2019; Howcroft et al., 2020), we 
encourage NLG researchers to include details of any instructions and training they 
gave evaluators in their publications. This, along with efforts to standardize 
human evaluation design (Belz et al., 2020; Howcroft et al., 2020) and deployment 
(Khashabi et al., 2021; Gehrmann et al., 2021), will support future development of 
evaluator training procedures and the comparison of human evaluation results in 
future NLG evaluation work.  

6 Related Work  

A subfield of NLG analyzes the role of human evaluations, including discussions of 
the tradeoffs of human and automatic evaluations (Belz and Reiter, 2006; 
Hashimoto et al., 2019). There are critiques and recommendations for different 
aspects of human evaluations, like the evaluation design (Novikova et al., 2018; 
Santhanam and Shaikh, 2019), question framing (Schoch et al., 2020), and 
evaluation measures like agreement (Amidei et al., 2018), as well as analyses of 
past NLG papers’ human evaluations (van der Lee et al., 2021; Howcroft et al., 
2020). Additionally, crowdsourcing literature has work on effectively using 

 



platforms like Amazon Mechanical Turk (e.g., Daniel et al., 2018; Oppenheimer et 
al., 2009; Weld et al., 2014; Mitra et al., 2015). In this work, we focus on the role 
evaluator training can play for producing better accuracy at distinguishing human- 
and machine-generated text, though other quality control methods are worth 
exploring.   

Previous work has asked evaluators to distinguish between human- and machine-
authored text. For example, Ippolito et al. (2020) found that trained evaluators 
were able to detect open-ended GPT2-L-generated text 71.4% of the time, 
Garbacea et al. (2019) reported that individual evaluators guessed correctly 66.6% 
of the time when evaluating product reviews, and Brown et al. (2020) found 
evaluators could guess GPT3-davinci-generated news articles’ source with 52% 
accuracy, though these results are not directly comparable to ours due to 
differences in the evaluation setup, data, and participants.  

Finally, our findings that untrained evaluators are not well equipped to detect 
machine-generated text point to the importance of researching the safe 
deployment of NLG systems. Gehrmann et al. (2019) proposed visualization 
techniques to help readers detect generated text, and work like Zellers et al. 
(2019b), Ippolito et al. (2020), and Uchendu et al. (2020) investigated large 
language models’ ability to detect generated text.  

7 Conclusion  

We found that untrained evaluators were unable to distinguish between human- 
and GPT3-generated text from three domains. However, we also found that the 
evaluators focused on surface-level text qualities to make these decisions and 
underestimated current NLG models’ capabilities. We experimented with three 
methods for training evaluators, and while example-based trainings led to 
increases in recall and the amount of content-based evaluations, they did not lead 
to significant improvements in accuracy across all domains. Given that evaluators 
struggled to distinguish between human- and machine-generated text in this 
setting, we should shift how we think about collecting human evaluations for 
current NLG models.  
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A Appendices  

A.1 Newspapers  

Each newspaper came from a randomly chosen U.S. state and was selected from 
Wikipedia’s lists of newspapers by state 
(en.wikipedia.org/wiki/List_of_newspapers_in_the_United_States#By_state_and
_territory). The human- authored news articles and prompts came from the 
following states and websites:  

• HI: www.westhawaiitoday.com 
• CT: www.greenwichtime.com/ 
• WA: www.vashonbeachcomber.com/ • SD: www.argusleader.com/ 
• CA: www.redding.com/ 
• MA: www.lowellsun.com/ 
• NE: starherald.com/ 
• VA: dailyprogress.com/ 
• WV: www.theintermountain.com/ • NM: www.lcsun-news.com/ 
• LA: www.nola.com/ 
• IA: qctimes.com/ 
• NY: www.pressconnects.com/ 
• IN: www.pal-item.com/ 
• NJ: www.northjersey.com/  

A.2 Score Frequencies  

The frequency of the scores (out of 5) received by evaluators is shown in Figures 3 
(for GPT2 experiments) and 4 (for GPT3 experiments).  

 

Figure 3: Histogram of scores classifying human and GPT2 texts.  

(a) GPT2 overall (b) GPT2 story (c) GPT2 news (d) GPT2 recipe 



 

Figure 4: Histogram of scores classifying human and GPT3 texts.  

(a) GPT3 overall (b) GPT3 story (c) GPT3 news (d) GPT3 recipe  

 

A.3 Annotation Details  

The authors annotated 300 comments (150 from the No Training experiment and 
150 from the Examples experiment). For each experiment, we randomly chose 50 
authors from each setting and randomly added 1 of their responses to the 
annotation set. Each comment was annotated by 2 of the authors. The annotation 
labels are shown in Table 4. To create the set of annotation labels, the authors 
created a candidate list of labels, annotated a subset of the data collected in the 
pilot study (Appendix A.5) together, then another subset separately, and finally 
refined the labels based on feedback from that process. Because evaluators’ 
responses often contained more than one reason for their choice, comments 
could receive more than one label.  

A.4 Evaluators’ Expectations of Generated Text  

Because we asked evaluators whether they thought the text was human- or 
machine- authored, they often justified their choices by explaining what types of 
human language they believed machines could (or could not) generate. We took 
note of these comments and annotated for them in our data annotation process 
(Appendix A.3) because they demonstrate the expectations evaluators have for 
the quality of machine-generated text. Some example comments shown in Table 
5.  

 

 



Table 4: The annotation labels, along with an example of each label. Note that 
some example sentences would also be labeled with additional labels. We did not 
use the Null category in the paper’s analyses.  

Category Label Description Example 
Form Grammar The spelling and 

grammar of the text, 
punctuation/formatting 
issues 

I would make the text more 
grammatical by adding more 
punctuation where necessary. 

Level of  
detail 

Is the text simple or does 
it go more in-depth? 

i would include more examples and 
explanations of the statements. The 
author needs to elaborate more on 
the topic. 

Genre If the text is the 
genre/domain/style/ 
formality that the reader 
expects, adheres to style 
norms 

written exactly the way a human will 
tell a story 

Content Repetition Words/phrases/content 
repeated itself 

Repeating “or some would say” 
seemed very unnatural. 

Factuality The accuracy of the text, 
whether it describes 
things that are “true.” 

The article lists many facts that make 
the information seem like it was 
machine-generated. 

Consistency How the text relates to 
the context and other 
pieces of the text 

The subject of the article follows the 
headline well without repeating it 
exactly. 

Common 
sense 

Whether the text “makes 
sense” within the world 
that it is written 

Change the “bake in the preheated 
oven for 20 minutes on top of the 
stove.” You can’t bake on top of the 
stove but to bake in the oven. 

Coherence The structure and 
coherence of the text. 
Order issues go here. 

More cohesion between sentences. 
Feel loosely related, but wording is 
strange. 

Machine 
capabili-
ties 

Writer intent 
and 
expression 

Speculating about 
writer’s intent or 
capabilities (e.g., ability 
to express emotions) 

The text is thorough and tries to 
cover all basis of the situation. It is 
very inclusive and humans worry 
about being inclusive not machines. 

Null Miscellaneou
s 

Everything else too many dialogue-like things, and 
make it less gender-dicey. 

Null/Vague No reasons given, or too 
vague to be considered a 
real reason 

i selected this rating because it is 
definitely written by human 



Table 5: Example reasons evaluators gave for their decisions that spoke to their 
beliefs about current NLG capabilities.  

Punctuation is perfect as well as the flow of the text. There is also more 
complex punctuation, such as quotes, that I think a computer would get wrong.  

“fried anyone to a crisp.” That is a human if I’ve ever seen one. a bot or AI is 
more proper, they wouldn’t write so casual.  
Because it talked about love which robots know nothing about.  

Lack of oxford comma. A computer would know better.  
The article flows properly, has appropriate English and multiple quotes. This 
would seem to be more than a bot could create. How would a bot create 
random quotes?  
This was more of a ramble which humans do, not computers.  

There are details and key phrases used in this article that computer generated 
text would not have in it, such as “came up short”, “put together a solid drive”, 
“put up any points”. These are human specific terms and are not generally able 
to be programmed into a text program.  
This piece quotes the host and I don’t believe AI can interview people yet so this 
has to be human written.  

It has a lot of detail in an emotional description that a machine isn’t capable of 
giving to its readers.  
The way some words are phrased here again shows the human uncertainty, “let 
the apples marinate for about 30 minutes”. If this was machine-generated, it 
would most likely just say marinate for 30 minutes.  

It seems to know when to use semicolns very well. This could be a human or a 
really smart computer.  
I don’t think AIs are capable of writing recipes on their own just yet.  

I don’t believe a machine could come up with this level of whimsy or creativity 
and have it make sense.  
I don’t think AI would use the term ‘literally’.  

There is a lot of every day language written in this recipe that I couldn’t see a 
machine possibly replicating.  
It adds that she is both nervous and excited whereas a machine wouldn’t care 
what emotions are involved.  
The writer used proper grammar and punctuation. No bot could write this,  

I’m not sure if a computer would get the concept or use the word “your” where 
the recipe begins with “Start by doing your prep.”  



A.5 Pilot Study  

Before running the experiments described in the paper, we ran a smaller-scale 
version with both Amazon Mechanical Turk (n = 22) and “expert” evaluators (NLP 
graduate students; n = 11). We asked the evaluators to distinguish between 
stories authored by humans, GPT2, and GPT3 and to explain their reasoning. 
When we coded and analyzed their responses, we found that the most accurate 
evaluators focused on textual aspects like repetition and were less likely to 
mention aspects like style. The AMT evaluators mentioned grammar and spelling 
far more frequently than the expert evaluators, who were more likely to mention 
the repetition, factuality, and commonsense of the passage.  

 

A.6 Training and Instructions  

Figure 5 shows the basic instructions that were shown to all evaluators, in both §2 
and §3, regardless of training or domain. All training information occurred after 
receiving the basic instructions.  

 

A.6.1 Instruction Training  

The training shown to evaluators in the Instruction training condition is shown in 
Figure 6.  

 

 

Figure 5: Basic instructions shown to all evaluators.  



 

Figure 6: The Instruction training.  

A.6.2 Example Training  

A screenshot of the Examples and Comparison training is in Figure 7. The full set 
of examples and annotations used in the Examples and Comparison trainings can 
be found in the supplementary materials and at 
ark.cs.washington.edu/human_evals_ACL21.  

http://ark.cs.washington.edu/human_evals_ACL21


 

Figure 7: The Example training (left) and Comparison training (right) in the story 
domain. The instructions are the same for both, except “Choose the one you think 
was written by a machine.” was in Comparison only.  
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